Preparing for LHC Physics
Frank E. Paige

LHC accelerator and detectors are being installed — plan 1s for first
collisions in “summer of 2007,

Commissioning will take time: initially just 43/2808 bunches. Hope for
< 100pb~! in 2007. But need to start getting ready now. . ..

Topics:
e NLO QCD corrections to bbH [Sally Dawson, Chris Jackson]
e NNLO QCD corrections to Z — ¢~ [Bill Kilgore].
e SUSY phenomenology — separate talk [Tadas Krupovnickas].

e Pr eparations for ATLLAS physics [E.P.; see also Kyle Cranmer]
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NLO bbH Corrections

Cross section for bbH /A is enhanced for tan3 > 1. Decay H/A — 171~
also enhanced. Not early physics but potentially important.

Calculation [Dawson, Jackson, Reina, Wackeroth] €xtends previous work on ¢fH.
Compute one-loop corrections to gg — bbH (massive pentagons) and
corresponding real emission processes. Essential for double b tag.
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For single b tag can treat process as gb — Hb. Much simpler calculation
available in MCFM [Campbell, Ellis]. Require pr, > 20GeV, 1, < 2.5 and
compare:
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Very good agreement.
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Requiring second b tag reduces cross section by an order of magnitude:
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Double tag 1s not used in ATLAS analysis. Might be useful cross check.
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Can also compare inclusive rate without b tag with NNLO calculation
[Harlander, Kilgore]. Good agreement between NLO-corrected gg — bbH and
NNLO-corrected bb — H:
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Conclusion: cross section 1s under good control.
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NNLO W — ¢v and Z — ¢7¢~ Corrections

W — ¢v and Z — ¢+¢~ will be early LHC physics: expect ~ 10° Z and
~ 10° W events for 100pb~!. Crucial for calibration and for luminosity
determination — traditional methods difficult at LHC energies.

Integrated cross section was first PP > (L)X
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Calculation [Bill Kilgore] uses extension of NLO subtraction:

ONLO = / dGR—I-/dGV
+1

= / dGR—dGA +/ dGA+/dGV
n+1t n+1 n
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Compute first term numerically and second analytically.

For NNLO have double real, real-virtual, and 2-loop virtual with multiple
overlapping subtractions. Exploit fact that total is finite.

Analytic part 1s finished: have complete expression for d64 and for
analytic integral. Latter can be written as L*¥H,,y, where L*"V is elementary
lepton tensor and H,,y 1s expressed as combination of dilogarithms and
elementary functions. Result for (dominant) gg — ZX part:
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Full analytic result exists, but expression is so large that single-page
Postscript file was too slow to display(!).

Result gives dc/d? pgld3 pe,. Hence can integrate with arbitrary lepton
cuts. Of course result is singular if one forces, e.g., pr ¢, + pre, = 0.
Need NNLO resummation to handle this.

Remaining task 1s to implement numerical calculation. Not trivial: must
deal with numerical cancellation of dogr — dGcy4.

Expect results well before first Z — 14~ is observed at LHC.
Calculation 1s significant advance in state of the NNLO art.

But Z production i1s somewhat special: double singular regions only for
pr,z = 0. Need more new techniques for, e.g., NNLO jet cross section.

And backgrounds for new physics typically involve many partons. . ..
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ATLAS Preparations for Physics

Most previous ATLAS physics studies have considered 10-100fb~".
Now beginning Computing System Commissioning (CSC). Main goals:

e Simulate “as-built” detector: e.g., mis-alignment of beam, solenoid,
and calorimeter by few mm.

e Analysis strategy for first 100pb~!.
Initial luminosity unclear, but will have 100pb~! before 100fb~!.

Even 100pb~! is not small: gives about 10> Z — ¢¢, about 10° ¢7 and
perhaps 10° SUSY events. Major discovery is possible!

Plan to simulate with GEANT (15-30m/event) and to reconstruct
(1m/event) about 107 physics events. Mainly Standard Model

processes/backgrounds. Huge but necessary effort. . ..
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Even tiny data sample would be useful: do not understand soft physics.
Extrapolations of average multiplicity (left) and underlying multiplicity in

jet events (right) [Arthur Moraes]:
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Hope for much more: detector calibration, background measurement,
even search for new physics. Will discuss each briefly.. ..
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Calibration: ATLAS calorimeter optimized for EM resolution, driven by
h — vy. Hence hadronic response has e/h > 1.

Current reconstruction assumes correct EM calibration and applies
H1-style correction: EM showers are dense, so Eyye =~ E; hadronic

showers are difuse, so Eiye > E.

Existing calibration OK to few percent based on comparing reconstructed
jets with Monte Carlo truth.

OK for discovery but not for precision measurements. Goal is < 1%.

Hadronic shower simulations are not reliable. Need to test calibration in
situ using, e.g., pr balance between y or Z — ee and jets, mass for
t — qqgb, . ... Work on this 1s just starting.

NEI‘II‘O(INI'AnLKLg'(;‘R"AITEO“RY -12- FE. Paige: Preparing for LHC Physics



Backgrounds: For narrow peak (e.g., Z’ or KK resonance) can measure
backgrounds from sidebands.

SUSY is perhaps most likely early discovery physics. Cross section 1s
< 10pb, so must rely on inclusive signatures:

e K7 plus multijets.
e K7 plus hard dijjets (e.g., from gg — )Z(l)q).
e Possibly dileptons plus £7.

Existing analyses have estimated backgrounds using parton shower
Monte Carlo plus fast detector simulation. Neither very reliable. Hence
make hard cuts = negligible SM background.

Cannot afford to do this with limited statistics.

For first time have enough fully simulated events to study background.
Using multi-parton matrix element generators (ALPGEN, SHERPA).
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But ALPGEN, SHERPA,. .. are leading order in QCD — have large scale
dependence. NLO calculations of SUSY backgrounds (e.g., Z 4 4jets) not
available in forseeable future.

Must measure backgrounds from data.
For Z — vV + njets, can simply measre Z — £7{~ + njets with small E7.
tt 1s intermediate in difficulty [Dan Tovey].

QCD multijets are probably most difficult background to understand.
Contributions both from heavy flavor (b,c — vX) and from mismeasured
jets (cracks, shower leakage, ...).

High order in o, so NLO calculation impossible.
Must measure samples minimizing SUSY “background”:
e Multiple jets with small £7;

e Coplanar dijets (and perhaps Y+ jet) with large E7 from crack,
leakage, etc.
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Then assume jet mismeasurement factorizes: combine mismeasurement

probability with multijet cross section. Not easy, but for first time will
have sufficient data to study problem.

Simulation of dijets of with 560 < E7 < 1120GeV for E7 (left) and AET
(right) looks OK for AEr < 100GeV:
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Need to verify this with real data.
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Conclusion

Importance of TeV scale has been understood for at least 25 years. LHC
1s about to give us first data.

And yes, we need more postdocs.
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